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Abstract—Emotion recognition is critical in affective comput-
ing, with applications ranging from healthcare to entertainment.
Multimodal Machine Learning has emerged as a promising
approach to improve the accuracy and robustness of emotion
recognition systems by combining information from multiple
modalities, such as audio, visual, and textual data. In this paper,
we present our implementation of Multimodal Machine Learning
for emotion recognition using state-of-the-art models for feature
extraction of modalities, namely VideoMAE for video, MPNet for
text, and CLAP for audio. This research discusses and reviews
cross-modal interactions via different fusion techniques, such as
Concatenation, TensorFusion, and Low-Rank Multimodal Fusion
for Multimodal Emotion Recognition. We conduct experiments
on the Multimodal EmotionLines Dataset (MELD) and propose
a new framework leveraging Multimodal Machine Learning to
understand verbal, vocal, and visual modalities and classify given
content into one of seven emotions - Anger, Disgust, Sadness, Joy,
Neutral, Surprise and Fear.

Index Terms—Multimodal Machine Learning, Multimodal
Emotion Recognition, Fusion Techniques, TensorFusion, Low-
Rank Multimodal Fusion, VideoMAE, MPNet, CLAP

I. INTRODUCTION

Emotion recognition has become a crucial area of research
in the field of affective computing, as it plays a vital role
in various applications, including healthcare, education, enter-
tainment, and human-computer interaction. Due to the com-
plexity and subjectivity of emotions, as well as the variability
and noise in the data, it is difficult to accurately identify human
emotions from several modalities, including facial expressions,
voice, physiological signals, and textual content. Therefore,
researchers have been exploring various approaches to improve
the accuracy and robustness of emotion recognition systems,
and one such approach is Multimodal Machine Learning
(MML).

MML is an emerging research field that combines informa-
tion from different modalities to improve the performance of
machine learning models. In the context of emotion recogni-
tion, MML involves integrating data from multiple modalities,

such as visual, audio, and textual data, to enhance the accuracy
of emotion recognition models. The rationale behind this
approach is that different modalities provide different cues
about human emotions, and integrating them can lead to more
accurate and robust emotion recognition.

In recent years, MML has shown promising results in
emotion recognition, and researchers have been exploring
various approaches for feature extraction, fusion, and classifi-
cation in MML [1], [2]. Feature extraction involves extracting
relevant features from each modality, such as facial landmarks,
speech features, and textual features. Feature fusion involves
combining the extracted features from different modalities to
obtain a unified data representation. Classification involves
using machine learning algorithms to classify emotions based
on the unified representation.

In this paper, we propose a novel architecture for Multi-
modal Emotion Recognition. Our model relies on 3 modali-
ties, Audio, Vision, and Text (A+V+T), to identify the emo-
tion in the given content. The audio features are extracted
using Contrastive Language-Audio Pretraining (CLAP) [3].
The Video features are extracted using Video Masked Auto
Encoder (VideoMAE) [4], while the text is extracted using
MPNet [5]. These features are combined or fused with fusion
techniques such as Concatenation, TensorFusion [6], and Low-
Rank Multimodal Fusion [7]. The final stage involves passing
the joint representation through a classifier to identify the
emotion in the given content.

This work aims to provide an overview of the state-of-
the-art in MML for emotion recognition and identify the
challenges and opportunities in this field. Specifically, we aim
to address the following: different modalities used in MML for
emotion recognition and their contribution to improving the
accuracy of emotion recognition systems, and a comparison
of existing approaches for feature extraction, fusion, and
classification in MML for emotion recognition.

The rest of the paper is organized as follows. Section



II summarizes the previous research work in Unimodal and
Multimodal Emotion Recognition. Section III defines feature
encoders for the different modalities used in MML for emotion
recognition - Verbal, Vocal, and Visual. The approaches for
fusing the modalities are discussed in Section IV. Method-
ology is described in Section V. Section VI introduces the
dataset and implementation details of the proposed architec-
ture. The results and findings are discussed in Section VII.
Finally, in section VIII, we conclude the paper and provide
directions for future research.

II. RELATED WORK

Emotion Recognition of a particular content can be done
in two ways - using one of the modalities (Unimodal), e.g.
text or audio, or by taking and combining information from
multiple modalities (Multimodal).

A. Unimodal

In recent years, text-based approaches for emotion recogni-
tion have gained attention, primarily due to the emergence of
the Transformer model [8]. Li et al. [9], [10] have explored the
use of BERT [11] and Transformers in ERC by encoding sen-
tences and dialogs, respectively. Jiangnan et al. [12] extended
this approach by designing three types of masks to capture
different dependencies in a conversation. These masks learn
the conventional context, Inter- and Intra-Speaker dependency.

In order to model interactions between interlocutors, Ghosal
et al. [13] incorporated commonsense components including
mental states, events, and causal relationships. Authors in [14]
and [15] have also employed graph neural networks (GNNs)
to encode inter-utterance and inter-speaker relationships in
ERC. By adding speaker names to utterances and putting
separation tokens between them, Kim et al. [16] suggested a
straightforward method for modeling contextual information.

For the purpose of creating contextualized utterance repre-
sentations, Wang et al. [17] employed LSTM-based encoders
to capture inter- and intra-speaker dependencies. A Directed
Acyclic Graph (DAG)-based ERC model was presented by
Shen et al. in [18] that combines the advantages of recurrence-
based and graph-based neural networks. A transformer-based
approach was put up by Zhu et al. [19] to predict emotion
labels by fusing common sense and current events. The
EmotionFlow model was created by Song et al. [20] to encode
user utterances by concatenating them with another query and
using a random field to gather sequential information at the
emotional level.

B. Multimodal

Co-attention layers play an important role in fusing the
modalities [22]. [21] proposes HCAM, a Hierarchical Cross
Attention Model for Multi-modal Emotion Recognition that
leverages co-attention layers and are trained hierarchically.
Previous research on incorporating contextual information
from previous utterances has established the baseline for
analyzing dyadic conversations. In some studies [23], [24],
previous utterances from both parties are used along with

contextual information to predict the emotional state of a
given utterance. Majumder et al. [25] extend this work by
modelling the uni-modal contextual information separately
and then fusing tri-modal features hierarchically to obtain a
more comprehensive feature representation of the utterance.
DialogueRNN [26] treats the contextual information of each
speaker and the global state as distinct entities and uses
emotional context from both sources to make accurate pre-
dictions. Zhang et al. [27] introduce the ConGCN model,
which uses Graph Convolution Networks to model Speaker-
Utterance and Utterance-Utterance relationships concurrently
in a single network by processing both audio and text utterance
features. Multi-modal emotional behaviours are examined by
Mao et al. [28] from both intra- and inter-modal aspects. Multi-
head attention-based fusion [8] is used by the CMU-Mosei
approaches, such as those of Loshchilov et al. [29] and Tsai
et al. [30], to recognize emotions in a multi-modal way.

Most of the previous studies have not considered facial
features that play a significant role in determining the emo-
tional context of a conversation. These studies use frames
as a whole entity without extracting essential parts, such as
the face. Furthermore, most of these studies lack an active
fusion strategy other than simple concatenation to exploit the
abundance of information present in visual and acoustic data.

III. MODALITY ENCODERS

Video Masked AutoEncoder, Contrastive Language-Audio
Pretraining, and Masked and Permuted Net are used in this
research to encode Video, Audio, and Text respectively.

A. Video Masked AutoEncoder

Video Masked AutoEncoder or VideoMAE [4] is a self-
supervised video pre-training method that utilizes masked
autoencoders [31] to efficiently learn effective video repre-
sentations without needing large-scale supervised datasets.

Masked autoencoders [31] are a type of neural network
trained to reconstruct its input data after masking some parts.
The masked areas can be randomly selected or follow a
specific pattern, and the goal is for the network to learn how to
fill in these missing pieces accurately. This technique has been
used in self-supervised learning tasks, where the model learns
from unlabeled data without explicit supervision signals.

The method achieves impressive results on small datasets by
using customized video tube masking with an extremely high
ratio, which encourages more effective video representation
extraction during the pre-training process. VideoMAE [4] also
demonstrates that data quality is more important than data
quantity for self-supervised video pre-training and that domain
shift between pre-training and target datasets is crucial.

B. Contrastive Language-Audio Pretraining

Contrastive Language-Audio Pretraining (CLAP) [3] is a
pipeline for developing an audio representation by combining
audio data with natural language descriptions. This approach
involves constructing a contrastive language-audio pretrain-
ing model that incorporates feature fusion mechanisms and



keyword-to-caption augmentation to enable the model to pro-
cess audio inputs of variable lengths and enhance performance.

Contrastive refers to a type of learning where the model
learns by contrasting similar and dissimilar examples. In
other words, it tries to learn representations that make similar
examples more alike and dissimilar ones less alike. The model
is trained using a contrastive learning approach that compares
the embeddings of audio and text, and the loss function is:
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where (Xa
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i ) is one of the i-indexed audio-text pairings.
The audio encoder faudio(·) and the text encoder ftext(·), both
with projection layers, produce the audio embedding Ea

i and
the text embedding Et

i , respectively.
The model is evaluated across several tasks, including text-

to-audio retrieval, zero-shot audio classification, and super-
vised audio classification, and has shown superior performance
in text-to-audio retrieval and state-of-the-art performance in
zero-shot audio classification [3].

CLAP [3] is related to Contrastive Language-Image Pre-
training (CLIP) [32] in that they use contrastive learning as
their main training objective. However, while CLIP focuses
on images and text, CLAP focuses on audio data with natural
language descriptions.

C. Masked and Permuted Net

Masked and Permuted Net (MPNet) [5] is a novel pre-
training method for language understanding that combines
the advantages of BERT and XLNet while addressing their
limitations.

BERT [11] and XLNet [33] are pre-training models for
natural language processing. BERT [11] uses masked language
modeling (MLM) to predict missing words in a sentence,
while XLNet [33] uses permuted language modeling (PLM)
to capture the dependency among predicted tokens. MPNet [5]
combines the advantages of both models by using permuted
language modeling like XLNet but also takes auxiliary position
information as input, like BERT, which reduces the position
discrepancy between pre-training and fine-tuning.

Experimental results show that MPNet [5] outperforms pre-
vious state-of-the-art pre-trained models, such as BERT [11],
XLNet [33], and RoBERTa [34], on a variety of downstream
NLP tasks.

IV. MULTIMODAL FUSION

Multi-modal data fusion combines data from multiple
sources to improve the quality of the information. This can be
done by fusing data from different modalities, such as images,
text, and audio.

A. Concatenation

One of the simplest methods for fusing modalities is con-
catenation. The concatenation operation is a simple way to
combine two or more vectors. Given two vectors, x, and y,
the concatenation operation is defined as follows:

z = x⊕ y (4)

Where z is the new vector that is formed by concatenating
x and y.

Concatenation is a simple and effective method for fusing
modalities. However, it can be computationally expensive to
concatenate large vectors. And it can lead to information loss.
This is because the features from each modality are combined
into a single feature vector. This can result in the loss of
important information specific to each modality.

B. Tensor Fusion

The Tensor Fusion layer fuses the information from the
different modalities by explicitly modeling the inter-modality
dynamics. Inter-modality dynamics refer to the relationships
between the features from different modalities. For example, in
a video, the facial expressions of a person can be used to con-
vey sentiment. The tensor fusion layer models inter-modality
dynamics using a 3-fold Cartesian product from the modality
embeddings. The 3-fold Cartesian product creates all possible
combinations of features from the different modalities.
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1

]
⊗
[
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1

]
⊗
[
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]
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Where zl is text embedding, zv is video embedding, and za

represents audio embedding.
Tensor Fusion is a mathematical operation that creates a

new tensor by multiplying two tensors. It has no learnable
parameters, meaning it is a fixed function. Although the output
tensor is highly dimensional, it has been observed that Tensor
Fusion does not overfit easily. This is because the output
neurons of Tensor Fusion are easy to interpret and semantically
meaningful. In other words, the manifold they lie on is not
complex but just highly dimensional. This makes it easy
for the subsequent network layers to decode the meaningful
information.

C. Low-Rank Multimodal Fusion

Low-rank Multimodal Fusion (LMF) is a method for ef-
ficiently computing tensor-based multimodal representations
with fewer parameters and computational complexity. LMF
decomposes the weights into low-rank factors, reducing the
number of parameters in the model and enabling linear scaling
with the number of modalities. This method calculates by



breaking down high-dimensional tensors into smaller matrices
that can be multiplied together to reconstruct them.

The computation of the input tensor Z, which is formed by
the unimodal representation, can be expressed as follows:

Z =

M⊗
m=1

zm, zm ∈ Rdm (6)

The tensor outer product over a set of vectors indexed by
m, denoted by

⊗M
m=1, is performed. Here, zm represents the

input representation with 1s appended to it.
The final fusion step is calculated as follows:

h =

(
r∑

i=1

M⊗
m=1

w(i)
m

)
· Z (7)

Where,

w(i)
m =

[
w

(i)
m,1, w

(i)
m,2, . . . , w

(i)
m,dh

]
(8)

and
{{

w
(i)
m,k

}M

m=1

}R

i=1

are the rank R decomposition fac-

tors.
The advantages of this approach are that it reduces com-

putational complexity, requires fewer parameters, enables lin-
ear scaling with more modalities, and achieves competitive
results on downstream tasks such as sentiment analysis or
emotion recognition. However, it may not capture all possible
interactions between different modalities due to its low-rank
approximation.

V. METHODOLOGY

This research paper compares models trained on Concate-
nation, Tensor Fusion, and Low-Rank Multimodal Fusion
for multimodal emotion recognition. The proposed model
comprises several subnetworks, including SubNet for video
and audio fusion and TextSubNet for text fusion. The Mul-
timodalEmotionClassifier model takes input tensors for audio
(audio x), video (video x), and text (text x) data.

The SubNet class defines a subnetwork used for video and
audio fusion. The TextSubNet class implements an LSTM-
based subnetwork for text fusion. The MultimodalEmotion-
Classifier class incorporates the SubNet and TextSubNet sub-
networks. It also includes post-fusion layers to combine the
modalities further. These post-fusion layers consist of linear
transformations and dropout operations. The input tensors are
passed through the respective subnetworks during the forward
pass. The outputs of the subnetworks are then passed through
different fusion techniques. These fusion tensors are then
processed through the post-fusion layers to obtain the final
output.

The MultimodalEmotionClassifier model aims to learn a
mapping between the input modalities and a scalar output
value. The architecture and fusion strategy allows for capturing
the relationships between different modalities, enhancing the
overall understanding and performance.

The model is trained using appropriate loss functions and
optimization algorithms to minimize the discrepancy between
predicted and ground truth values. For training and optimizing
the model, the following components are utilized:

1) Loss Function: The criterion used for the MultimodalE-
motionClassifier model is the CrossEntropyLoss, which is
suitable for multi-class classification tasks. It measures the
dissimilarity between predicted and true probability distribu-
tions. By quantifying the average information content required
to represent the true distribution with the predicted one, cross-
entropy loss facilitates efficient model training and parameter
optimization. It is calculated using equation 9.

CrossEntropyLoss(y, ŷ) = −
∑
i

yi log(ŷi) (9)

where y represents the true probability distribution, ŷ de-
notes the predicted probability distribution, and i iterates over
the classes or categories in the distribution.

2) Optimization Algorithm: The Adam optimizer is a pop-
ular and effective adaptive optimization algorithm that effi-
ciently updates the model’s parameters based on the gradients
calculated during backpropagation. It combines the benefits
of both adaptive learning rates and momentum methods.
By maintaining adaptive learning rates for individual model
parameters and incorporating momentum, Adam enhances
convergence speed and stability during training. Its adaptive
nature makes it well-suited for a wide range of neural network
architectures and improves generalization performance.

θt+1 = θt −
η√

v̂t + ϵ
· m̂t (10)

where,
m̂t =

mt

1− βt
1

(11)

v̂t =
vt

1− βt
2

(12)

and
mt = β1 ·mt−1 + (1− β1) · gt (13)

vt = β2 · vt−1 + (1− β2) · g2t (14)

mt and vt represent the first and second moment estimates
respectively. β1 and β2 are the exponential decay rates for the
moment estimates. gt refers to the gradient at time step t, and
θt denotes the parameter values at time step t. η is the learning
rate, and ϵ is a small constant to avoid division by zero.

VI. IMPLEMENTATION

Our proposed model is trained on Multimodal Emotion-
Lines Dataset (MELD) [35]. The dataset was extracted from
the popular TV show Friends, with over 13,000 utterances,
and is an extension of EmotionLines Dataset [35], [36]. It
has a diverse range of emotions - Anger, Disgust, Fear,
Joy, Neutral, Sadness, and Surprise. Data collection involved
capturing dialogues encompassing textual, audio, and visual
modalities. MELD provides rich contextual information along
with speaker annotations. Its comprehensive data extraction



Fig. 1. Architecture of the proposed model.

methodology makes it an ideal choice for developing and
evaluating novel approaches for multimodal fusion.

The training dataset has 9989 utterances, validation has
1109 utterances and the test has 2610 utterances. Number of
utterances per emotion and split is shown in table I.

TABLE I
MELD DATASET COMPOSITION BY EMOTION

Emotion Train Validation Test
Anger 1109 153 345

Disgust 271 22 68
Fear 268 40 50
Joy 1743 163 402

Neutral 4710 470 1256
Sadness 683 111 208
Surprise 1205 150 281

The train, validation and test data are passed through CLAP
[3], VideoMAE [4], and MPNet [5] for audio, video and text,
respectively.

The audio is extracted from the video with the help of
moviepy library. CLAP takes audio of 64-dimensional Mel
spectograms. The Fourier transform is computed on windows
of 1024 samples. The lowest and the highest frequency of
interest are 50 and 14000, meaning the short-time Fourier
transform will not be calculated for values outside this range.
The extracted Mel spectrograms are then passed through
CLAPModel, which projects the audio into 512 dimensional
vector.

The video is encoded using VideoMAE. All the frames
of the videos for the model are resized to 224x224 and
normalized with image mean: 0.485, 0.456, 0.406 and image
std: 0.229, 0.224, 0.225 per channel. These are then passed
through VideoMAE to extract video feature vectors of 768
dimension.

MPNet is used for encoding the text or utterances. All
the words are lowercased and tokenized with the help of
BertTokenizer. The max length of the utterance is 512 words.

Tokenized words are then passed through MPNet to get
embedding size of (512, 768). The embeddings are then nor-
malized on the first dimension to get the final text embedding
size of 768 dimensions.

All these encoded modalities are then passed into their
respective Sub-Networks that converts the raw input vector
into lower dimensional vectors. Audio and Video embeddings
are processed with SubNet class that has 3 linear layers,
and outputs 128-dimensional vector. On the other hand, Text
embeddings are processed with TextSubNet, which has an
LSTM layer followed by a linear layer. The output of this
subnetwork is a 32-dimensional vector.

Finally, the fusion is computed using Tensor Fusion to
get a dense representation combining information across all
three modalities. The fusion is followed by 3 linear layers,
the final layer outputs a vector of 7 dimensions indicating
the probability of each emotion - Anger, Disgust, Fear, Joy,
Neutral, Sadness, and Surprise. The whole architecture is
shown in fig 1.

VII. RESULTS AND DISCUSSION

Table II compares the result of different fusion techniques.
Loss, accuracy and F1 score are used to compare the results
of the model. Higher accuracy and F1 score are better, while
the model is better with lower loss.

TABLE II
METRICS OF MODEL ON TEST SET

Fusion Loss Accuracy F1 Score
Concatenation 1.9164 47.6 54.5

Concat with Prj. 0.0011 57.2 60.7
Tensor Fusion 0.0008 59.1 62.3

LMF 0.0007 58.0 61.9

The baseline model, which implements simple concatena-
tion of modality embeddings without any projection (subnet-
work) and fusion performs the worst. This is in line with
the reasoning that the model fails to capture and merge



information from different modalities with simple concate-
nation. However, after adding the projection network, the
model’s performance jumps by over 10%. The main work of
projection layers is to get intra-modality representations. This
means that the feature vectors are denser and more rich in
information. Tensor Fusion performs best, followed by Low-
Rank Multimodal Fusion.

VIII. CONCLUSION

In this study, the objective was to compare different modal-
ity fusion methods and propose a novel framework for Mul-
timodal Emotion Recognition. The task was to recognize
emotion in one of the 7 classes - Anger, Disgust, Sadness, Joy,
Neutral, Surprise and Fear from a multimodal video that has
verbal, vocal and visual modalities. We compared the effect of
fusion techniques such as Concatenation, Tensor Fusion, and
Low-Rank Multimodal Fusion and presented a new architec-
ture that takes audio, video, and text to recognize emotion.
The embeddings are extracted using CLAP, VideoMAE, and
MPNet for audio, video, and text respectively. The results in
this paper suggest more work is required in Affective Comput-
ing for Multimodal Emotion Recognition. Future work could
involve emotion recognition in conversation that takes previous
utterances into consideration. Another research direction could
involve finding better fusion methods. Explainable AI methods
could be added to explain the prediction with natural language
generation or a heatmap.
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